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ABSTRACT 

Martinson's ultrasonic data of sodium is used to obtain 

the isothermal bulk modulus and its first and second pressure 

derivatives at zero pressure. The local pseudopotential 

method proposed by Ashcroft and Langreth is used to obtain 

theoretical values for these quantities. The results are 

compared with experimental data. The first derivative is 

predicted within a few percent while the theoretical and 

experimental values of the second derivative differ about 

thirty percent. 
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I. INTRODUCT ION 

Simple local pseudopotential models have been used to cal

culate the binding energy and compressibility of several metals,1-3 

and reasonably good agreement with experiment has been obtained. 

In the present paper, we analyse Martinson's4 ultrasonic data 

for sodium, and calculate the bulk modulus and its first and 

second pressure derivatives at zero pressure. The method pro

posed by Ashcroft and Langreth 2 has been used to derive the 

theoretical values of the above derivatives at absolute zero 

degree. The parameter r is obtained from the extrapolated c 

.experimental lattice constant a o in one case and from the extra

polated experimental bulk modulus B in the second. The results o 

are then compared with experimental values. In addition, results 

are also shown which include an ion overlap repulsion term. · 

II. ANALYSIS OF DATA 

We have used Martinson's notation · t~ t~l-12 = 

to obtain the following relations: 

(~~s 1 = C
s [~+ a1J (1) 0 

r 
P=o 

(a'c~ = Cs [1-3BT' 2a
l 

J 
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+ 2a
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·P=o 
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where Cs is the adiabatic elastic constant Cll' 

CS BT BT ' are the adiabatic elastic constant, 
0' 0' 0 

, 
C C 1 • 44' or 

isothermal 

bulk modulus,and the first pressure derivative of isothermal 

bulk modulus at zero pressure, respectivily. Also, a l and a 2 
are the f.irst and second order pressure coefficients listed 

in Table V in Martinson's paper. 4 

We have chosen the data at 19S o K because they were taken 

over a wider pressure range up to 9 Kbars which would give a 

better estimate of the first and second pressure derivatives 

of the bulk modulus. The fact that Martinson assumed linearity 

of the pressure versus resistance change of the manganin gauge 

led to some minor errors in the estimation of the first and 

second pressure derivatives of the bulk modulus. The nonlinearity 

of the manganin gauge has been discussed inthe literature. S We 

have now corrected for this effect by fitting his actual gauge 

with a quadratic pressure scale. 

Ho and Ruoff6 had also analysed Martinson's data using 

Cook's7 analysis. In the present paper, we use Overton's8 

relation to calculate the first pressure derivative of isothermal 

bulk modulus at 195°K and zero pressure from that of the adiabatic 

bulk modulus. We also further generalize Overton's relation to 

the second pressure derivative as follows: 

1- 2 
BET 

+ ~(~) (aBT~ 
SB T \"ap aT / 

T P 

2 

SBT 
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+6' [~;!~ T + a'~ T' ~~j p G~ -a·~T2 ~~!j p + a;BT{:~j: 1 
A-_ TVS2B T where u 

Cp 

/::;" = ~~=/::;. [~T Gf) 
T 

1 
BT 

The second pressure derivative of the isothermal bulk modulus 

is then calculated. Since we calculate these derivatives at 

zero pressure, the knowledge of the pressure dependence. of the 

thermal properties is not necessary. We have used the data of 

Siegel and Quimby9 to calculate the volUmetric thermal expan·s ion 

coefficient S and its temperature derivative ~~ , and correct 

the temperature variation of density. The value of specific 

heat C is from Martins 10 work. 
p . T 
. b' f d (dB) contrl utlons rom af ~ 

neglect the small 

at 19S o K and zero and 

pressure. The results are listed in Table I, where we extrapolate 

h f B 0 oK . M . 'd 11 t e value 0 0 to uSlng artlnson s ata. 
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Table I 

69.26 kb 

3.904 

-0.0696 kb- 1 

77 kb 

* 3.904 

-0.0696 kb- l * 

We assume that the isothermal pressure derivatives do 

not vary with temperature. 12 T' This is discussed by Swenson for Bo . 

III THEORETICAL CALCULATION 

In order to calculate the values of the bulk modulus and 

its pr~ssure aerivatives at zero pressure, we have to know the 

total energy of the solid as a function of volume analytically. 

The method proposed by Ashcroft and Langreth 2 is used in the 

present calculation. The total energy of the solid per electron 

(assuming a static lattice) at OaK is expressed as: 

E = 2.21 
r 2 

s 

2/3 
o . 916 _ (0. 115 _ 0 . 031 .tn r ) _ 1. 79 2 Z + 3a 

r s s r s 4rrr 3 
s 

+ E 
B 

4 3 1 where 3 rrrs = v = n is the average volume per electron, Z is 

the number of free electrons per ion, a=4rrrc2 is the parameter 

to be determined by the zero pressure condition ~ = 0, EB is 
s 

the contribution due to band structure effects. 

Barrett13 first reported a partial phase transformation of 

sodium from bcc to hcp near 3S o K. Microscopic experiments have 

shown such a transformation is of the martensitic type. In the 

present calculation, we have assumed that sodium is in the bcc 

(4 ) 
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phase all the way down to OOK. Also, the value of BT extrapolated o 

to OOK at zero pressure is based on the data obtained for the 

bcc phase. 

From thermodynamic definitions, we have at the absolute 

zero of temperature: , 

p dE (5) = dY 
2 

B = lim (yd E) 
0 P+o dy2 

y+V 
0 

, 2 y2 d3E 
B = lim [_(y. d E + - --)] 

0 B dy2 B dy3 
P+o 
y+y 

0 

" [(l+B')Y d 2E y2 d3E y3 d4E 
B = lim 

dy2 
+ (3+B') 

B2 dy3 
+ ---] 

0 B2 B2 dy4 
P-+o 
y+y 

0 

For the bcc phase, the relation between the lattice constant 

a. and the para'meter r 5 is 

r . s 

Using Siegel and QuimbY's9 thermal expansion data, again assuming 

no phase change, we estimate the value of rs at OOK and zero 

pressure as 3.936 in Bohr units. From this value, we evaluate 
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rc from the zero pressure equilibrium condition dE = 0 as 
drs 

follows: 

9r 2 
dE 

0= 4.42 c 2.708 0.031 
drs 

= - -3 - --4- + + 
2 r r r r s s s 

(6) 

dEB 
and -ar- = 

s 
0.2036 l: 1 

x4 

s 

cos
2
y-y sin 2y- cos

2
y J 

o .166r FL (x) 
(1+ s ' ) 

2 x . 

where x is a reciprocal lattice vector measured in units of 

twice the Fermi wave vector, and 

1 I 2 / X+I/ F (x) = - +-(I - x ) In -L 2 4x x-I 

The value of r is evaluated as 1.970. We then use eq. (4) c , " 
and (5) to calculate B ,B and B. The results are listed in o 0 0 

the second column of Table II. 
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Table II 

Expt 11 Theory (based on 
experimen tal a. ) 

0 

77 kb* 82.36 kb 

** 3.904 3.926 

- 0 .0696kb -1** -0.0461 kb- 1 

* 
** 

extrapolated OaK value 

195°K value 

Theory (Born Repulsive 
term included) 

87.06 kb 

4.096 

-0.044lkb- 1 

If,instead, we use the following two conditions 

p=O= -

1 

1 

4rrr 2 
s 

d 2E 

dE 
drs 

B = 
o l2rrrs dr 2 

s 

and the ex~rapo1ated OaK value of Bo to determine the value of 

r and the equilibrium value of r , we obtain r s =4.038, r =2.047. c s c 
, " 

Again using eq~ (4) and (5) to calculate Bo ' Bo and Bo ' we obtain 

the results shown in Table III. 

In the previous calculation the Born repulsive energy due to 

ion - ion overlap was not considered. It would be interesting to 

see the effect of adding this term to the total energy. A 

Huggins-Mayer type expression for the Born repulsive energy 
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is used: 

where M is the number of nearest neighbors, and the parameters b+ 

and p are from Fumi and Tosi's1 4 calculation. Although the 

value orE is nearly negligible compared to the rest of the terms rep 

in the expression for the total energy, it becomes increasingly impor~ 

portant after repeated differ~ntiations with respect to r . Similar s 
I " 

calculations of Bo' Bo and Bo with this repulsive term included 

have been carried out, and the results are listed in the third 

column of Tables II and III. However, the results are of 

questi?nable validity, because as remarked by Tosi lS , there are 

uncertainties in these parameters band p arising from the 
+ 

uncertaintities in the experimental values used in their deter-

mination. 

T' B 
o 

Expt 11 

* 

Table III 

Theory (hased on 
experimental Bo) 

77 kb 77 kb 

** 3.904 3.94S 

Til 
B -0.0696 kb- l ** -0.0508 kb- l 

o 

* extrapolated OaK value 

** 19SoK value 

Theory (Born repulsive 
term include d) 

77 kb 

4.092 

-0.0519 kb- l 
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IV CONCLUSION 

P . 1 S· 16 S · 17 1 d B 18 h reVlOUS y, lmon , axena et a . an rown ave 

calculated certain elastic properties of sodium. Saxena17 et al~ 

calculated the binding energy and compressibility both for bcc 

and hcp phases; however, the Born repulsive term was not included. 

Simon16 has done similar calculations on the elastic modulus and 

its first pressure derivative using an improved theory of Gombas. 19 

The theoretical results were compared with experimental values 

bt ' d b D' d . h d T .. 20 d D . 1 21 Q' o alne y le erlC s an rlVlsonno an anle s . ulte a 

discrepancy was found for the bulk modulus and its pressure 

derivative~ The present calculation shows much better agreement 

between the theoretical values and experimental values for the 

isothermal bulk modulus and its first pressure derivative. There 

is a slight discrepancy in the second pressure derivative. How-

ever, if we consider the simplicity of the theory and the fact 

that there is an estimated 10% standard error in the experimental 

value for the second derivative the result is actually fairly 

good. 
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